본문 바로가기
반응형

Data Science242

[evaluation metrics][segmentation model] Segmentation model, 평가지표 정리 2022. 5. 17.
[autoML][python][mljar] automated machine learning - Part2 : mljar.version2 1. previous posting (install) 2. mode (manual, custom) 3. model save, load 4. features importance 1. previous posting (install) 설치 및 간단한 소개에 대해서는 이전글 참고 2021.05.26 - [Data Insider] - [python][mljar] automated machine learning - Part2 : mljar [python][mljar] automated machine learning - Part2 : mljar 순서 1. mljar : automated machine learning 2. install - pip 3. run code 4. report 1. mljar : automa.. 2022. 4. 5.
[ML][performance matrics] Performance matrics, imbalanced dataset Performance matrics Confusion matrix Accuracy Precision, Recall F1-score TPR, FPR ROC curve imbalanced dataset Confusion matrix Accuracy (TP+TN)/(TP+TN+FP+FN) Precision, Recall Precision: TP/(TP+FP) Recall: (TP)/(TP+FN) F1-score 2 * (precision*recall)/(precision+recall) TPR, FPR TPR = (TP)/(TP+FN) = Recall FPR = (FP)/(FP+TN) ROC curve imbalanced dataset 1. negative class(0) > positive class(1) h.. 2022. 4. 1.
[R] 부분 문자열 추출하기 R에서 문자열 추출 1. substring 2. 예제 3. 그 박의 문자열 조작 substr, str_sub 4. stringr cheat sheet 1. substring() substr(text, start, stop) substring(text, first, last = 1000000L) 2. 예제 extracting substring("HumptyDumpty sat on a wall",5,9) replacing mystring 2022. 4. 1.
[Imputation][python] Missing value Imputation, simple and multivariate 아마 거의 모든 데이터 셋에는 missing value가 존재 missing value 처리 방법은 간단히 두가지 지운다. : deletion 채운다. : imputation imputation 방법은 크게 두가지 simple multivariate simple imputation If “mean”, then replace missing values using the mean along each column. Can only be used with numeric data. If “median”, then replace missing values using the median along each column. Can only be used with numeric data. If “most_frequent”.. 2022. 3. 15.
[Multi-Class][Multi-Label] Multi class와 multi label의 개념 및 차이 multi-class, multi-label Multiclass classification means a classification task with more than two classes; e.g., classify a set of images of fruits which may be oranges, apples, or pears. Multiclass classification makes the assumption that each sample is assigned to one and only one label: a fruit can be either an apple or a pear but not both at the same time. Multilabel classification assigns t.. 2022. 3. 14.

TOP

Designed by 티스토리